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Figure 1: Real time renderings of di�raction e�ects in the Grace Cathedral. (a) Compact Disc. (b) Di�raction pattern of a LG
42” Smart TV. (c) Wide di�raction lobes on a rough specular holographic paper.

ABSTRACT
We present a novel approach for real-time rendering of realistic dif-
fraction e�ects in surface re�ectance under environmental illumina-
tion. Renderings in arbitrary environments require the computation
of a convolution. In the case of di�raction, the convolution kernel
is large due to the high frequency details contained in di�raction
pa�erns, making computations at real time framerate impractical.
We propose a low rank factorisation of the di�raction kernel that al-
lows the computation of the convolution in two passes with smaller
kernels instead of a large 2D kernel. We present renderings of the
di�raction produced by several surfaces and reach a performance
of 50 to 100 FPS.
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1 INTRODUCTION
Di�raction e�ects can produce astonishing rainbow colours in
surface re�ectance. �ey happen when the microgeometry of a
surface reaches a size close to the wavelength of light (around the
micrometer). When light is re�ected by such a surface, light waves
interfere and the angle of re�ection becomes wavelength dependent.
As a result white light is decomposed into its main colours.
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Stam (Stam 1999) was the �rst to propose a physically based dif-
fraction BRDF derived fromKircho� theory of di�raction. Although
very accurate such a model cannot be used for real time renderings
of arbitrary di�raction pa�erns as it relies on heavy computations
at every frame of an animation. Dhillon et al. (Dhillon et al. 2014)
proposed a reformulation of Stam’s BRDF for real-time renderings
under point light sources using a Taylor expansion and a precom-
putation of the Taylor terms. However no real time renderings
under arbitrary illumination is presented in their work. Recently,
Toisoul&Ghosh (Toisoul and Ghosh 2017) have proposed a refor-
mulation of Stam’s BRDF using a �rst order approximation as well
as a measurement setup to directly measure di�raction pa�erns on
homogeneous planar surfaces. �eir measurements are carried out
at a single wavelength (using a spectral �lter), and their method
is able to recover the di�raction pa�ern under an arbitrary light
spectrum. �e result is stored in a di�raction lookup table that can
be used for real time renderings under point light sources as well as
arbitrary illumination using a pre�ltering method based on a con-
volution. However such pre�ltering only works for an axis-aligned
orientation of the di�ractive sample. In this work, we propose an
approach to compute such a convolution in real time using a low
rank factorisation of the di�raction lookup tables of (Toisoul and
Ghosh 2017). As a result correct renderings of di�raction can be
produced under arbitrary rotations about the view vector, with
potential realistic rendering applications in games and VR.

2 DATA-DRIVEN REFLECTANCE MODEL
�is work builds on the recent work of Toisoul&Ghosh (Toisoul
and Ghosh 2017) and employs their �rst order di�raction BRDF
model given in equation 1 where F and G are the common Fresnel
and Geometric terms, ωi andωo are the light and camera directions
respectively.
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Figure 2: Di�raction table of a holographic paper. (a) Origi-
nal table. (b) Rank 1 reconstruction using SVD.

fr,dif f raction ( ®ωi , ®ωo ) = 4π 2F 2( ®ωi , ®ωo )G( ®ωi , ®ωo )Sd (®h) (1)
�e main component of the BRDF is the di�raction lookup table

Sd that is computed from a measurement of the di�raction pa�ern
at a single wavelength. An example of the di�raction table of a
holographic paper is shown in �gure 2a. In the next section, we
explain how this 2D lookup table can be factorised into an ou�er
product of two lower rank matrices for real time computations.

3 RANK FACTORISATION
�e di�raction lookup table Sd can be factorised into an ou�er
product of two matrices of a lower rank r . �is factorisation corre-
sponds to solving the following optimisation process :

arg min
S̃d

‖Sd − S̃d ‖F

subject to rank(Sd ) = r
(2)

S̃d is the �nal rank r matrix that best approximate Sd . It can
be found analytically using a singular value decomposition (SVD)
Sd = U ΣVT where the matricesU and V are orthogonal matrices
and Σ is a diagonal matrix containing the singular values of Sd . �en
only the r largest singular values are kept as shown in equation
3. �e matrices Ur and Vr are the r �rst column of U and V and
Σr is the diagonal matrix containing the r largest singular values
of Sd (Markovsky 2008). Note that the optimisation is applied
independently to each color channel.

S̃d = Ur ΣrV
T
r (3)

�e horizontal and vertical convolution �lters of rank r that are
stored to compute the two pass convolution are given byUr Σ

1
2
r and

Σ
1
2
r V

T
r . Note that such a method works for axis aligned di�raction

pa�erns. In the case of a non axis aligned pa�ern we �rst apply an
a�ne transformation to make it axis aligned before computing the
low rank factorisation. �e inverse a�ne transformation is applied
during the rendering.

4 RENDERING
4.1 Convolution
For rendering, we employ the di�raction lookup tables of (Toisoul
and Ghosh 2017). Each table can be parametrised by the non nor-
malized half vector ®h = ®ωi + ®ωo where the horizontal and vertical
axis of the table correspond to the projection of ®h onto the tangen-
tial coordinate frame (®t , ®n × ®t). �e convolution is then computed
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Figure 3: Rendering of the di�raction pattern of two phones
in the Grace Cathedral. (a) HTC 8X. (b) LG G3.

using the method of (Karis and Games 2013) under the assumption
®ωo = ®n = ®r where ®n and ®r are the normal and re�ection vector. We
convolve the environment map in two passes using the two low
rank �lters obtained in section 3. In each pass, we �rst calculate pro-
jection of ®h in the (x ,y) plane and rotate it depending on the local
orientation of the tangent ®t (to take into account the rotations of the
sample). �en the z coordinate of ®h is given by 1.0+

√
1.0 − h2x − h2y

(®h is not normalized) due to the above assumption.

4.2 Results
We present renderings in the Grace Cathedral environment in the
accompanying video and �gures 1 and 3 using a rank 1 factorisation.
�e CD rendering is computed using single pass 1D convolutions in
the direction of the local grooves. �e TV rendering is modelled as
the sum of two 1D convolutions (single pass) in the main directions
of the di�raction pa�ern. We reach around 100 FPS at a resolution
of 1920x1080 with a NVIDIA GTX 1080 GPU for these renderings.
�e renderings in �g. 1c and 3 are computed in two passes by �rst
convolving the environment map with one factored �lter and then
convolving in the orthogonal direction with the second �lter. For
these renderings, we reach an average of 50 FPS.

5 CONCLUSION
We present a method to compute realistic di�raction e�ects in
real time under arbitrary illumination. Such a technique currently
works in real time using a rank 1 factorisation of the di�raction
table. Be�er results are very likely to be achieved with a higher rank
but will require more powerful GPUs to handle such computations.
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